Kamis, 06 Desember 2012

LDR (Light Dependent Resistor)


DASAR TEORI
            
        LDR (Light Dependent Resistor) adalah suatu komponen elektronika yang resistansinya tergantung pada intensitas cahaya. LDR dibuat dari bahan cadium Sulfida yang peka terhadap cahaya. LDR akan mempunyai hambatan yang sangat besar saat tidak ada cahaya yang mengenainya (gelap). Dalam kondisi ini hambatan LDR mampu mencapai 1M ohm, akan tetapi pada saat LDR mendapat cahaya hambatan LDR turun menjadi beberapa ohm saja.

  

Cara kerja rangkaian 1 adalah pada saat intensitas cahaya disekitar LDR membesar, maka hambatan LDR akan mengecil. Hal ini menyebabkan tegangan pada Titik 1 semakin besar. Dan sebaliknya, jika intensitas cahaya disekitar LDR semakin kecil, maka hambatan LDR semakin besar. Hal ini menyebabkan tegangan pada Titik 1 semakin kecil.

Cara kerja rangkaian 2 adalah pada saat intensitas cahaya disekitar LDR membesar, maka hambatan LDR akan mengecil. Hal ini menyebabkan tegangan pada Titik 2 semakin mengecil. Dan sebaliknya, jika intensitas cahaya disekitar LDR semakin besar, maka hambatan pada LDR semakin kecil. Hal ini menyebabkan tegangan pada Titik 2 semakin besar.

LDR memanfaatkan bahan semikonduktor yang karakteristik listriknya berubah-ubah sesuai dengan cahaya yang diterima. Bahan yang digunakan adalah Kadmium Sulfida (CdS) dan Kadmium Selenida (CdSe).


KARAKTERISTIK LDR
Karakteristik LDR terdiri dari dua macam, yaitu Laju Recovery dan Respon Spektral.
1.      Laju Recovery
Bila sebuah LDR dibawa dari suatu ruangan dengan level kekuatan cahaya tertentu kedalam suatu ruangan yang gelap, maka bisa kita amati bahwa nilai resistansi dari LDR tidak akan segera berubah resistansinya pada keadaan ruangan gelap tersebut. Namun LDR tersebut hanya akan bisa mencapai harga di kegelapan setelah mengalami selang waktu tertentu. Laju recovery merupakan suatu ukuaran praktis dan suatu kenaikan nilai resistansi dalam waktu tertentu. Harga ini ditulis dalam K/detik, untuk LDR type arus harganya lebih besar dari 200 K/detik (selama 20 menit pertama mulai dari level cahaya 100 lux), kecepatan tersebut akan lebih tinggi pada arah sebaliknya, yaitu pindah dari tempat gelap ke tempat terang yang memerlukan waktu kurang dari 10 ms untuk mencapai resistansi yang sesuai dengan level cahaya 400 lux.

2.      Respon Spektral
LDR tidak mempunyai sensitivitas yang sama untuk setiap panjang gelombang cahaya yang jatuh padanya (yaitu warna). Bahan yang biasa digunakan sebagai penghantar arus listrik yaitu tembaga, alumunium, baja, emas, dan perak. Dari kelima bahan tersebut tembaga merupakan penghantar yang paling banyak digunakan karena mempunyai daya hantar yang baik.
Pada keadaan gelap tanpa cahaya sama sekali, LDR memiliki nilai resistansi yang besar (sekitar beberapa Mega ohm). Nilai resistansinya ini akan semakin kecil jika cahaya yang jatuh ke permukaannya semakin terang. Pada keadaan terang benderang (siang hari) nilai resistansinya dapat mengecil , lebih kecil dari 1 KOhm. Dengan sifat LDR yang demikian maka LDR biasa digunakan sebagai sensor cahaya. Contoh penggunaannya adalah pada lampu taman dan lampu di jalan yang bisa menyala di malam hari dan padam di siang hari secara otomatis.

Penguat DIFFERENSIAL


    Penguat beda (differential amplifier) sering disebut juga penguat diferensial, biasanya dibuat dengan sistem transistor yang dirangkai secara rangkaian “emitter–biased“. Dua buah tipe semikonduktor yang hampir sama, yaitu BJT (Bipolar Junction Transistor) dan FET (Field Effect Transistor) diperlukan untuk aplikasi pembuatan penguat diferensial. Semua komponen ini dalam dua rangkaian “emitter-biased”, yang kedua komponennya harus memiliki karakteristik yang sesuai. Termasuk sumber tegangan (power supply) +VCC dan  VEE harus mempunyai level amplitudo yang sama besar. Untuk desain penguat yang multitingkatnya, dengan mendapatkan penguatan tegangan yang besar, maka dapat digunakan sebuah rangkaian searah yang langsung antara semua tingkat dari penguatdiferensial tersebut.

  Pengertian rangkaian searah langsung adalah dengan menghilangkan frekuensi mati (cut off frequency) yang lebih rendah yang biasa menggunakan kopel kapasitor, maka kopel kapasitor ini harus dihilangkan, sehingga menjadi kopel langsung. Oleh karena itu, penguat diferensial mempunyai kemampuan menguatkan sinyal DC yang baik, sama seperti menguatkan sinyal AC. Dalam sistem instrumentasi, penguat diferensial juga baik dan banyak digunakan sebagai pembanding dua buah sinyal input.

Sejarah Telekomunikasi




Telekomunikasi menurut sejarahnya berasal dari dua suku kata yaitu (tele = jarak jauh) dan (communicara =berita atau informasi). Sejarah dari dari telekomunikasi diawali dengan menggunakan asap dan drums sebagai sinyalnya dan ini terjadi di Africa, Amerika dan bagian dari Asia. Berdasarkan the Annex of the Constitution of the International Telecommunication Union (ITU), “Telecommunication means any transmission, emission or reception of signs, signals, writing, images and sounds or intelligence of any nature by wire, radio, optical or other electromagnetic systems”. Sinyal adalah segala sesuatu yang dapat dilihat (visual), didengar (audible) ataupun elektrik. Sinyal tersebut dapat dihasilkan dari berbagai media, seperti api yang menyala, asap, bendera, lampu, drum, senapan, telegraph, telepon, radio, dan sebagainya.
Dalam berbagai literatur sejarah disebutkan bahwa telekomunikasi sudah dilakukan manusia sejak ribuan tahun yang lalu menggunakan media yang sangat sederhana, seperti drum, api, air, maupun asap. Berikut ini adalah tahapan-tahapan perkembangan telekomunikasi.

Op Amp Penguat Non Inverting


  Penguat non Inverting
Banyak rangkaian elektronika yang memerlukan penguatan tegangan atau arus yang tinggi tanpa terjadi pembalikan (inversion) isyarat. Peguat op-amp tak-membalik (noninverting op-amp) didesain untuk keperluan ini. Rangkain ini dapat digunakan untuk memperkuat isyarat AC maupun DC dengan keluaran yang tetap sefase dengan masukan. Impedansi masukan dari rangkaian ini berharga sangat tinggi dengan nilai sekitar 100 MW. Dengan isyarat masukan dikenakan pada terminal masukan noninverting, besarnya penguatan tegangan tergantung pada harga in R dan F R yang dipasang. Isyarat keluaran penguat ini diambil dari resistor L R (biasanya berharga sekitar 35-50 W).
Penguat non inverting ini memiliki masukan yang dibuat melalui input non-inverting. Dengan demikian tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya. Untuk menganalisa rangkaian penguat op-amp non inverting, caranya sama seperti menganalisa rangkaian inverting.Penguat ini dinamakan penguat non inverting karena masukan dari penguat tersebut adalah masukan non inverting dari Op Amp. Sinyal keluaran yang dihasilkan oleh penguat jenis ini sefasa dengan sinyal masukannya. Gambar 3 menunjukkan rangkaian dari penguat non inverting.

Gambar . Penguat non Inverting
Rumus untuk menentukan tegangan keluaran dari penguat non inverting adalah sebagai berikut :

Untuk pengutannya :

Op Amp Penguat Inverting


Penguat Inverting

Penguat ini dinamakan penguat non inverting karena masukan dari penguat tersebut adalah masukan non inverting dari Op Amp. Sinyal keluaran yang dihasilkan oleh penguat jenis ini sefasa dengan sinyal masukannya. Gambar 2 menunjukkan rangkaian dari penguat inverting.

Gambar . Penguat Inverting

Rumus untuk menentukan tegangan keluaran dari penguat inverting adalah sebagai berikut :


Untuk pengutannya :